

量子ビームによる材料の反応解析

Analysis of reactions induced in materials using quantum beam

研究分野 Department 量子ビーム物質科学 Beam Materials Science

研究者 Researcher 古澤孝弘 T. Kozawa

キーワード Keyword

レジスト、微細加工、リソグラフィ、量子ビーム resist, nanofabrication, lithography, quantum beam

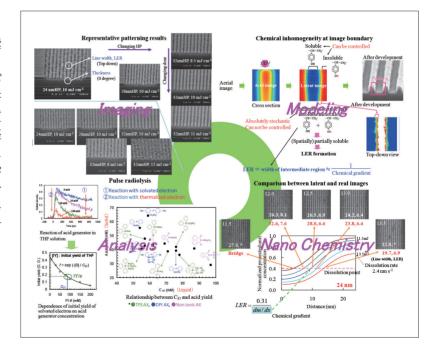
応用分野 Application 半導体リソグラフィ、レジスト材料 semiconductor lithography, resist materials

基礎

実用化準備

半導体製造における極端紫外光リソグラフィ、粒子線ガン治療等、今後電離放射線領域にある量子ビームの利用が大きく展 開して行くことが予想されます。

概要•特徵


短パルス量子ビームを活用した高時間分解過渡吸収分光システムは他に類を見ない装置であり、モデリングに威力 を発揮します。

技術内容

最先端の量子ビーム (電子線、極端紫 外光、レーザー、放射光、X線、ガンマ線、 イオンビーム)を利用して、量子ビームが 物質に引き起こす化学反応と反応場の研 究を行っています。量子ビームによる物質 へのエネルギー付与から、化学反応を経 て、機能発現に至るまでの化学反応シス テムの解明、得られた知見から新規化学 反応システムの構築を行い、産業応用分 野としては、特に半導体リソグラフィ材料 をターゲットとして、反応解析、材料設計 指針を得るための研究を行っています。

社会への影響・期待される効果

- ●レジスト材料の反応解析
- 新規材料の設計指針の取得

【論文 Paper】

- [1] T. Kozawa and S. Tagawa, Jpn. J. Appl. Phys. (Invited Review) 49 (2010) 030001.
- [2] T. Itani and T. Kozawa, Jpn. J. Appl. Phys. (Invited Review) 52 (2013) 010002.