建物向けエネルギーマネジメント、空調の省エネ、ZEB

空調のエネルギーマネジメントとその実証

情報科学研究科 情報システム構成学講座

特任助教 趙 大放 准教授 谷口 一徹

Researchmap https://researchmap.jp/zhaodafang

Researchmap https://researchmap.jp/ittetsu

研究の概要

本研究では、シンボリック回帰とモデル予測制御(MPC)を活用し た空調システム(HVAC)のオンラインエネルギー管理フレームワー クを提案しました。このフレームワークは、既存の HVAC システムに 容易に統合できる柔軟性と実用性を備え、エネルギー消費の削減とピー ク電力需要の抑制を同時に実現します。本フレームワークの中核とな るシンボリック回帰は、室内外の温度や消費電力といった限られたデー タのみを利用して、建物の熱力学的挙動を効率的に予測します。これ により、従来の物理モデルに基づく方法に比べて、モデリングや計算 負荷が大幅に軽減されました。実験では、冷房運転で最大49.3%、暖 房運転で最大73.9%のエネルギー削減を実現し、ピーク電力需要も冷 房で最大25.8%、暖房で最大35.1%削減されました。さらに、このア プローチは、乗員の快適性を確保しながらエネルギー効率を最適化す る手法としても有望です。

研究の背景と結果

建物は世界のエネルギー消費量の約30%を占め、そのうち暖房、換気、 空調(HVAC)システムは約45%を占めています。これは、エネルギー 効率化の取り組みにおいて重要な分野であることを示しています。し かし、従来の HVAC 制御では、建物の熱力学的相互作用を正確にモデ ル化するのが難しいという課題がありました。特に、建物の構造や使 用状況に応じて大きく変化する熱的特性をモデル化するためには、大 量の物理データと高度な計算能力が必要でした。本研究で使用したデー タ駆動型アプローチであるシンボリック回帰は、限られたセンサー情 報を活用して建物の温度変化を予測し、この問題を解決しました。

提案されたフレームワークは、大阪大学の研究室で実証され、冷房

運転では最大49.3%、暖房運転では最大73.9%のエネルギー削減を達 成しました。さらに、暖房運転では室内の既存熱源(例えばコンピュー タの排熱など)を活用することで、HVAC の運転時間を大幅に短縮し ました。この結果、エネルギー消費だけでなく、ピーク電力需要も削 減されました。特に、ピーク電力需要の抑制は電力契約コストの削減 にも寄与し得る重要な成果です。

さらに、シンボリック回帰を活用した温度予測モデルの精度は従来 の物理モデルを大きく上回り、HVAC制御の応答性や精度を向上させ ることができました。これらの結果は、エネルギー効率を最適化しな がら快適性を維持する手法として、提案されたフレームワークの実用 性と有効性を示しています。

研究の意義と将来展望

本フレームワークは、追加のハードウェアを必要とせず、既存の HVACシステムのセンサーのみを活用してエネルギー効率を向上させる、 低コストで持続可能なソリューションを提供します。この特長は、特 に多くの建物や施設で適用可能であり、広範なエネルギー管理ソリュー ションとしての可能性を秘めています。また、本研究で採用されたシ ンボリック回帰は、モデルの透明性と解釈可能性を提供する点で、他 の機械学習手法に比べて優れています。将来的には、計算速度のさら なる向上や複数ゾーンへの対応を進め、より大規模な建物群や施設全 体への適用を目指します。さらに、占有情報やエネルギー価格の変動、 電力需要予測などを統合することで、より高度で包括的なエネルギー 管理システムを構築する予定です。これにより、HVACの運用効率を 最大化するとともに、持続可能なエネルギー管理の実現に貢献するこ とが期待されます。

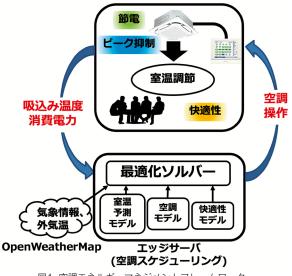


図1. 空調エネルギーマネジメントフレームワーク

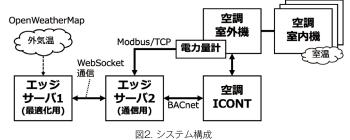


図3. 操作プロセスのイメージ

Zhao, Dafang; Watari, Daichi; Ozawa, Yuki et al. Data-driven online energy management framework for HVAC systems: An experimental study. Applied Energy. 2023, 352, 121921. doi: 10.1016/j.apenergy.2023.121921
Watari, Daichi; Taniguchi, Ittetsu; Catthoor, Francky et al. Thermal comfort aware online energy management framework for a smart residential building. 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE). 2021, 535-538. residential building. 2021 Design, Automatic doi: 10.23919/DATE51398.2021.9473922

https://resou.osaka-u.ac.jp/ja/

キーワード シンボリック回帰、エネルギー効率化、データ駆動型エネルギー管理