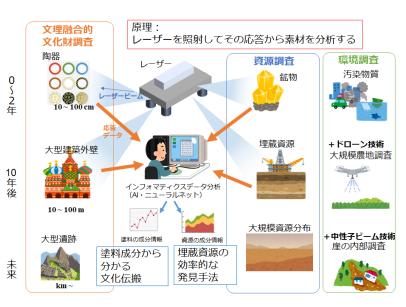
極限材料科学グループ

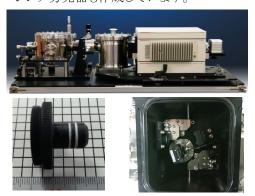
先端イメージング分光


Advanced Imaging Spectroscopy

清水俊彦 准教授 共同者: 猿倉信彦教授、山ノ井航平准教授

見えないものを見るために

産業技術分野及びエネルギー・環境分野 において、広い波長域で二次元的に解析 する分光装置が望まれています。特に従来 は困難であった中赤外光と深紫外光の領 域で需要が高まっています。私たちは、赤 外から深紫外光までの広い波長領域に対 応するイメージング分光技術の研究を行っ ています。


可視光以外の領域では、透過率の問題か ら光学素子とすることができる材料がほとん どありませんでした。そこで、私たちは、可 視光以外でも透明な材料や光学素子の研 究に加え、それらを使用した分光装置の開 発まで行っています。そして、それらの装置 を使用し、学際融合的に環境・資源・文化 財などの社会問題を解決する目的で分光 計測行っています。

応用1

分光装置開発

深紫外領域では、対応した光源と計測器が入手が 難しいという点があります。本グループでは企業と 協力し真空紫外まで対応した分光器・ストリークカメ ラシステムも開発しました。このため、深紫外光学 材料の評価も効率的に行うことができます。 さらに、近年のイメージング分光応用のため、フッ 化物材料を組み合わせることにより深紫外域の色 消しレンズを実現しました。このレンズを使用したイ メージング分光器も作成しています。



応用2 文化財の分光

近年学際連携による研究が重視されており、なか でも文理融合は重要な課題となっています。私た ちは、開発した装置を使用し、文化財の専門家と 協力しながた、レーザー科学を応用した文化財分 析を進めています。

可視光だけでは塗料の素材や絵の下に隠された 情報の取得が困難であるため、物質固有のデータ を取得できる紫外から赤外までのイメージング分光 が有効です。可視光以外の光を使用することで、 見えなかったものが見えるようになります。

グループHP

https://www.ile.osaka-u.ac.jp/ja/groups/research03/lam/

キーワード イメージング分光、異分野連携

