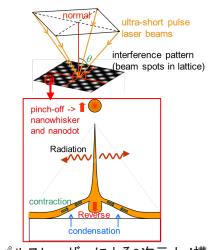
#### パワーフォトニクスグループ

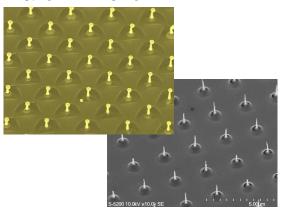

# 超短パルスレーザーを用いた3次元ナノ構造形成

Formation of 3D nanostructures using ultrashort pulsed lasers

中田 芳樹 准教授

### 超短パルスレーザーの干渉パターン加工応用と 3次元ナノ構造形成

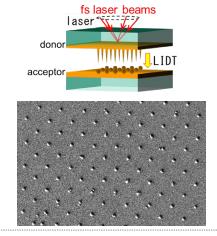
フェムト秒レーザーに代表される超短パルスレーザーを用いた物質加 工は、一般的に熱による悪影響(クラックやデブリなど)が無い加工法と 見なされている。一方で、干渉パターンのようにスポットサイズが波長 オーダーになる加工では、微細なスポット領域における熱的プロセスが 主体となり、3次元ナノ構造が形成される場合がある。干渉パターンのス ポット毎にフェムトリットルの金属が流体的な挙動を起こし、冷却によっ て固化するタイミングでナノ形状が固定する。このプロセスで、パラメー ターを精密に制御することによって、さまざまなナノ構造の作製が可能 である。さらに、飛散する金属ナノ流体を堆積させることで、周期的なナ ノドット構造の形成が可能である。微細加工の応用では、新たな材料特 性を持つナノデバイスの開発や、次世代の光学デバイスの製造などが 考えられる。また、バイオテクノロジー分野においても、この技術を用い た細胞操作やバイオセンサーの開発が進められている。




超短パルスレーザーによる3次元ナノ構 造形成の模式図 (Copyright (2013) Elsevier)



## 周期配列金ナノドロップ構造及び 金ナノウィスカー構造の形成


超短パルスレーザーの4ビーム干渉パターンを金 薄膜に適切なパラメーターで照射することで、周期 配列した金ナノドロップ構造(上)または金ナノウィ スカー構造(下)を形成することが出来る。後者の 頂点曲率半径は4nmであり、トップダウン的な加工 法で形成された構造としては世界最小である (Copyright (2010) Springer, (2013) Elsevier)





# 干渉パターンを用いた 周期配列ナノドット作製

左の金ナノウィスカー構造はナノドロップが離脱 することで形成される(上図)。これを堆積する手法 がレーザー誘起ドット転写法(LIDT)であり、周期 配列した直径500nm以下のナノドット構造をシング ルショットで作製する事が可能である。(Copyright (2020) IOP Publisher)



ブループHP https://www.ile.osaka-u.ac.jp/ja/groups/research01/plp/

-21 -

キーヮード 干渉パターン、ナノドロップ、ナノウィスカー、ナノドット、周期配列

