Na フラックス法・OVPE 法による 高品質ワイドギャップ半導体結晶成長技術

結晶成長、ワイドギャップ半導体、パワーデバイス、GaN、 酸化ガリウム

今西 下幸 IMANISHI Masayuki

電気電子情報通信工学専攻 准教授 創製エレクトロニクス材料講座 マテリアルイノベーション領域 森研究室

2-inch GaN crystal grown by the Na-flux method

1-inch Ga₂O₂ epitaxial wafer grown by the oxide vapor

ここがポイント!【研究内容】

窒化ガリウム (GaN) 結晶は青色発光ダイオードの材料として知 られていますが、次世代パワーデバイスや次世代通信システムへ の適用が期待されています。これらのデバイスを普及させるため には、GaN 結晶の高品質化及び低コスト化が必要です。我々は 液相法である Na フラックス法を用い、高品質かつ大口径の GaN 結晶を成長させる技術を確立しました。近年では気相法である OVPE 法と組み合わせ、GaN インゴットの作製を目指しておりま す。また、同じくパワー半導体材料として注目されている酸化ガ リウム結晶の OVPE 法による高純度化にも取り組んでおります。

応用分野

電力変換機器、固体光源 (LEDやレーザー)、5G通信技術

論文・解説等

- [1] M. Imanishi et al., Cryst. Growth & Des. 17 (2017) 3806. [2] M. Imanishi et al., Appl. Phys. Express 12 (2019) 045508.
- [3] M. Imanishi et al., Appl. Phys. Express 13 (2020) 085510. 連絡先 URL

http://crystal.pwr.eng.osaka-u.ac.jp/

