Brain-Computer-Interface (BCI) Φ 医療応用

柳澤 琢史

YANAGISAWA Takufumi

大阪大学高等共創研究院 教授

図1 BCIによるロボット操作

我々は、人の感覚運動野の脳表面に外科的に留置した電極 から、高精度な脳波を計測し、AI技術により、体が動かな い患者が想像した動きの内容を読み解き、自分の体の代わ りにロボットを動かせることを実証しました(図1)。ま た、人が見た映像の意味を脳表脳波から読み取り、同じ意 味の画像をリアルタイムに画面に提示する技術を開発しま した。これらは、重度の運動障害患者の運動機能や意思伝 達能力を回復する技術として期待されます。

加えて、この技術を使い、腕を失った後に幻の痛みに生じ る幻肢痛という難治性の痛みに対し、患者がBCIでロボッ トアームを動かす訓練を行うことで、痛みを減弱させる治 療法を開発しました。今後、より簡便な方法での臨床応用 を目指します。

キーワード

BCI、BMI、ロボット、幻肢痛、 脳可塑性、人工知能

応用分野

重度運動麻痺患者の運動補 完、新たな情報通信手段の 構築、精神疾患の治療

「研究の先に見据えるビジョン」

深層学習モデルによる解 読技術と脳情報のフィー ドバックを組み合わせ、 新しいBCIや脳機能修飾 による治療方法を開発し、 言語障害や高次認知機能 障害などの治療を目指し ます。

一度失うと再建・強化できない機能の治療へ

ロボット、PC / 脳情報解読 (AI)

脳機能の再建

脳機能の修飾

AIを用いた脳機能の再建と修飾

