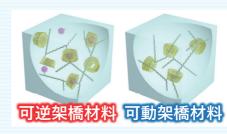
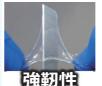
超分子を利用した 強靭な自己修復性高分子材料

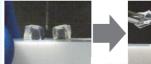
高等共創研究院/理学研究科

義徳 髙島 教授


>> 特徵·独自性


シクロデキストリン(CD:ブドウ糖が6~8個つながった 環状の分子)を構造に含む私たちの高分子材料は、CDの ホスト・ゲスト相互作用(分子間相互作用の一種)を利用し たネットワークを有する新しい機能性マテリアルである(上 図)。このポリマー材料は、大きくかつ可逆的に伸縮でき る極めて強靭な材料であり、また、万一破断しても材料 が再接着し強度が回復する自己修復機能も示す(下図)。

この新規高分子材料のデザインコンセプトは、原 理的にあらゆる高分子材料に適用可能であり、ヒド ロゲルからバルク (塊状) のゴム・エラストマー、プラ スチックまで、多様多種な材料について強靭性・柔軟 性、耐衝撃性、自己修復性などの物性・機能を付与 することができる。繊維質材料、無機材料との複合化 も可能であり、非常に適用範囲の広い技術である。


研究の先に見据えるビジョン

CDを高分子材料に組み込むことにより材料を強 靭化でき、これまでの高分子材料では難しかった用 途への展開が可能となる。使い捨てとしてきた材料 の耐久性が向上することで製品寿命の長い製品をつ くることができるほか、自己修復性を有するため、 メンテナンスフリー材料も実現できる。たとえば、 コーティングや構造材料、接着剤、耐衝撃材料など、 さまざまな用途においてアドバンテージがあり、社 会実装・実用化に向けた活動を精力的に推進したい。

自己修復性

分子認識に基づいた物質材料の選択的接着法および自己組織化法 自己修復性及び形状記憶性を有するゲル、及びその製造方法 特許第6239043号 包接錯体、自己修復性及び形状記憶性を有するゲル

Macromolecules 2019, 52 (7), 2659-2668. Macromolecules 2019, 52 (18), 6953-6962. ACS Appl. Polym. Mater. 2020, 2 (6), 2274-2283. Chem. Commun. 2020, 56 (32), 4381-4395.

参考URL

http://www.chem.sci.osaka-u.ac.jp/lab/takashima/

高分子、自己修復材料、強靭材料、長寿命材料