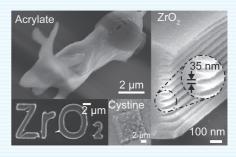
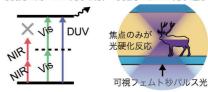
深紫外域吸収を利用した 3次元光ナノ造形法の開発

工学研究科 物理学系専攻

克昌 藤田 敦清 招へい研究員 \square 教授



特徴・独自性


3次元造形技術は、複雑な3次元構造を造形でき るため、エレクトロニクスから再生医学まで幅広い 分野で応用可能であり、研究開発さらには実際のも のづくりに活用されています。その中でも、2光子 吸収による光重合反応を利用した 2 光子造形法はナ ノサイズの3次元造形を可能にします。これまでは 近赤外光による励起が使われていましたが、吸収さ れるエネルギーが低く、利用できる光化学反応・材 料が限定されていました。

本研究では、可視光を用いながらも、深紫外光レ ベルの光吸収を利用する3次元造形法を開発しまし た。可視光の2光子吸収により深紫外光照射と同じ 効果を発生させ、エネルギーの高い深紫外域での光 化学反応を誘起できるため、従来法では使用できな かった光化学反応・材料を光造形に利用できるよう になります。これまでにアクリル樹脂、金属酸化物、 生体材料での3次元マイクロ・ナノ造形に利用でき ることを示しました。本技術は、材料の純度向上、 加工分解能の向上(80 nm)、2光子吸収の効率化 (従来法の約7倍)を達成し、3次元ナノ造形法に革 新をもたらしました。

次元ナノ造形に着目しており、本研究成果は 3次元バイオプリンティングへ応用が期待で きます。将来的には、診断用の組織チップの 作製や血管の1つ1つまで緻密に再現したミ 二造形プリンティングに応用でき、生体組織 工学・再生医学分野の基礎研究を推し進める ことができます。

可視光を用いた2光子吸収 可視光による2光子造形

研究の先に見据えるビジョン

本研究で開発した装置は、高い加工分解能、幅広 い材料選択、高効率での3次元ナノ造形を可能にし ます。我々の研究グループでは、生体適合材料の3

特願PCT/JP2019/002861 光造形装置、及び構造物の製造方法 特願2018-018938 光造形装置、及び構造物の製造方法

A. Taguchi, A. Nakayama, R. Oketani, S. Kawata, K. Fujita, "Multiphoton-Excited Deep Ultraviolet Photolithography for 3D Nanofabrication", ACS Appl. Nano Mater. (online, https://doi.org/10.1021/acsanm.0c02519).2020, 3, 11, 11434–11441

参考URL

https://lasie.ap.eng.osaka-u.ac.jp/home_j.html

2光子吸収、3次元ナノ造形、深紫外、金属酸化物、バイオプリンティング