Boosting HDR for Smarter Genome Control

HDR (homology-directed repair) often suffers from low efficiency, even in proliferating cells, making it a technical challenge. This technology establishes a novel method to enhance HDR efficiency by combining specific enzyme inhibitors with modifications to donor DNA. Compared to conventional methods, it offers higher editing precision and reproducibility, making it a promising candidate as a research reagent. It is particularly suited for the construction of high-efficiency knock-in systems and functional gene analysis, and we propose it as a versatile technology applicable to various cellbased experimental systems.

evoHDR Method as a Versatile Platform for High-Efficiency Knock-in and Gene Targeting

Chemically Modified Donor DNA + Modulation of Endogenous DNA Repair Activity = evoHDR Method [Patent pending]

Established method

HDR efficiency is extremely low, due to the predominance of the NHEJ-based DNA repair pathway.

A synergistic effect between the damaged donor and the inhibitor has been demonstrated.

Driving HDR Forward to Maximize Recombination Efficiency

- 1) Use of damaged donor DNA
- ② Use of the NHEJ inhibitor [AZD7648]
- ③ HDR Enhancement without Double-Strand Break(DSB)

A powerful reagent kit enabling over 100-fold improvement in precise genome editing.

DSB-Free HDR Activation of HDR

HDR Enhancement via SSBR Pathways?

T. L. Clarke et al., Molecular Oncology. 2022, 16, 3352-3379

Interestingly, the synergistic effect shown in the previous slide was also observed in reactions using nickase, contrary to expectations.