

Nanotechnologies / Materials

Sensing, Smart agriculture

"Return to the soil" circular soil moisture sensors

Department of Functionalized Natural Materials, SANKEN (The Institute of Scientific and Industrial Research) Assistant Professor Takaaki Kasuga

Researchmap https://researchmap.jp/tkasuga?lang=en

Abstract

A sustainable sensing system that combines simplified degradable sensor devices, wireless power supply, and thermal-camera image-based information recognition is developed. The sensor device comprises a biodegradable nanopaper substrate, natural wax, and an eco-friendly tin conductive line. The sensor device emits a thermal signal based on the soil moisture content. The thermal camera simultaneously acquires the soil moisture-content and sensor-device location. Most of the sensor-device components are biodegradable, and the residual components have a minimal adverse impact on the environment. Additionally, the fertilizer component in the substrate promotes plant growth.

Background & Results

Sensor networks comprising small wireless sensor devices facilitate the collection of environmental information and increase the efficiency of outdoor practices, including agriculture. However, the sensor-device installation density of a network is limited because conventional sensor devices must be removed after use.

In this study, we focused on a soil moisture sensor. The proposed sensing system comprised several degradable soil moisture sensor devices, a wireless power supply facility, and a thermal camera to acquire both sensing and location data. Each sensor device comprised a biodegradable paper substrate, a receiving coil composed of a tin (Sn)-printed conductive line, and a carbon-based heater. The installed sensor devices received power from their wireless power supplies, activating their heaters. The soil moisture content was determined using a thermal camera based on the detected hotspots. Following a certain period of usage (e.g., one season), the devices were degraded by microorganisms. Overall, a sustainable high-density sensing system is successfully achieved by combining a degradable sensor device, wireless power supply, and image-acquisition technology.

Significance of the research and Future perspective

The proposed sensing concept introduces a novel direction for realizing hyperdense sensor networks and contributes to the development of social systems that combine sustainability with meticulous environmental management.

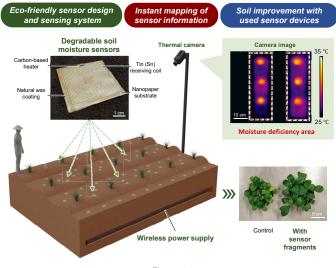


Figure 1

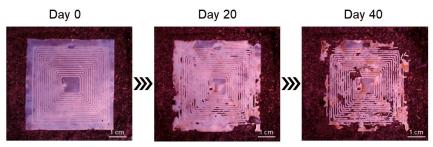


Figure 2

Patent Japanese Patent Application No. 2023-072321 Treatise dai: 10.1000/sdm: 20200014

e Kasuga, Takaaki et al. Wirelessly powered sensing fertilizer for precision and sustainable agriculture. Advanced Sustainable Systems. 2023, 8, 2300314. doi: 10.1002/adsu.202300314

L https://resou.osaka-u.ac.jp/en/research/2023/20231017_1

Keyword degradable sensors, nanocellulose, wireless power transmission