

Environmental remediation, Disinfection, Energy production

Sunlight-driven photocatalytic production of H_2 from H_2O_2

Division of Chemical Engineering/Research Center for Solar Energy Chemistry, Graduate school of Engineering Science Associate Professor Yasuhiro Shiraishi

earchmap https://researchmap.jp/read0054695

Abstract

Hydrogen peroxide (H₂O₂) is an important chemical used for bleaching and disinfection, and is a promising energy carrier as a fuel for fuel cell power generation. It is, however, difficult to generate hydrogen gas (H_2) , and has been considered not to be used as a hydrogen carrier. In this research, we succeeded in generating H_2 from H_2O_2 by adding phosphoric acid (H_3PO_4) and a metal-free powder photocatalyst to an H₂O₂ solution under sunlight irradiation. Social implementation can be expected toward the realization of a new energy society with H₂O₂ as a hydrogen/energy carrier.

Background & Results

For the social implementation of H₂O₂ as an energy carrier, it is indispensable also to use it as a hydrogen carrier. That is, as shown in Fig. 1, the on-site generation of H₂ from H₂O₂ (H₂O₂ \rightarrow H₂ + O_2 , ΔG° = + 131 kJ mol₋₁, equation (1)) is necessary. However, the reduction of H_2O_2 ($H_2O_2 + H^+ + e^- \rightarrow H_2O + \cdot OH$, $H_2O_2 + 2H^+ +$ $2e^{-} \rightarrow H_2O$, equation (4) proceeds in preference to the H⁺ reduction (equation ③) Furthermore, typical metal/metal oxide semiconductor, when used as a photocatalyst, promotes the decomposition of H_2O_2 on the surface $(H_2O_2 \rightarrow H_2O + 1/2O_2, \Delta G^\circ = -117 \text{ kJ mol}^{-1},$ equation (5). Therefore, there has been no example of generating H_2 from an H_2O_2 solution.

We made a meta-free photocatalyst consisting of graphitic carbon nitride (g-C₃N₄) organic semiconductor and graphene quantum dots (GQDs) cocatalysts. We found that sunlight (visible light) irradiation of an H₂O₂ solution containing the catalyst and phosphoric acid (H₃PO₄) successfully produces H₂ (Fig. 2). The metal-free catalyst scarcely promote the H₂O₂ decomposition (equation (5), and the hydrogen bonding interaction between H_2O_2 and H_3PO_4 forms a stabilized complex (Fig. 1, right) to suppress the H_2O_2 reduction(equation ④), thus promoting H^+ reduction (equation ③). H₃PO₄ has long been added to commercially available aqueous H₂O₂ solutions as a stabilizer. Therefore, the H₂O₂ solution containing H_3PO_4 obtained after the reaction can be stored and transported and can be used for on-site H₂ generation on an inexpensive metal-free photocatalyst. This may open a new possibility for the use of H₂O₂ as a new hydrogen/energy carrier.

Significance of the research and Future perspective

Energy carriers are considered to be the key material for realizing a non-fossil fuel dependent society. H₂O₂ is a promising candidate but cannot be used for H₂ generation. H₂O₂, therefore, has been considered to be unusable as a hydrogen carrier. Our results indicated that the use of H₃PO₄ and an inexpensive metal-free photocatalyst facilitates H₂ generation by sunlight. Although it is essential to improve the selectivity and H₂ production activity, the results open a new possibility towards sustainable energy society using H₂O₂ as a hydrogen/energy carrier.

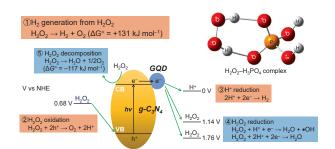


Fig. 1 Mechanism for H_2 generation from H_2O_2 (H_3PO_4 stabilizes H_2O_2 by hydrogen bonding interaction with H_2O_2 and suppresses the reduction by excited electrons)

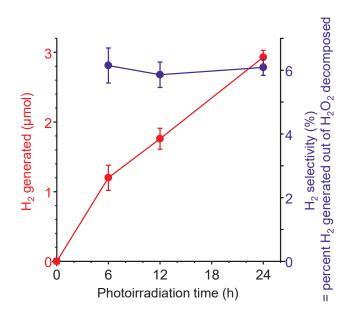
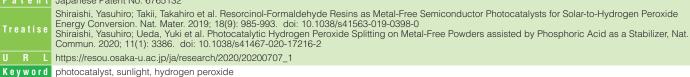



Fig. 2 Time change in the amounts of H₂ produced and the H₂ selectivity during simulated sunlight irradiation (λ >420 nm) (H₂ is continuously generated by photoirradiation, and H₂ selectivity is almost constant).

Patent Japanese Patent No. 6765132

